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Abstract

This is a failed attempt towards achieving differential privacy with randomized sketched kernel

ridge regression. The rest of this paper is organized as follows. After the introduction of some

notations, we give thorough background knowledge in empirical risk minimization and randomized

sketching in Section 1. In section 2 and 3 are the theoretical findings involving utility and privacy.

All technical proof is postponed to appendix and our code is available at 5.

1 Methodology and Related Work

1.1 Notations

We will use ‖ · ‖2, ‖ · ‖∞, and ‖ · ‖H to denote the `2-norm, the infinity norm, and norm in a Hilbert

space H, respectively. For matrices, we will use the notation ‖ · ‖2 and ‖ · ‖F to denote the 2-norm

and frobenius norm, respectively. A> is the transpose of matrix/vector A. Let In denote an n × n
identity matrix. We use | · | to denote the determinant. Let col(A) be the column space of matrix

A. With a slight abuse of notation, 0 represents a constant/vector/matrix with the desired shape

whose entries are all zero. Let A:,i:j be the i : j column slicing of A, i.e. the sub-matrix consists of

i, i+ 1, · · · , j-th columns of A. Analogously, let Ai:j,: be the i : j row slicing of A, i.e. the sub-matrix

consists of i, i + 1, · · · , j-th rows of A. We use [n] to denote {1, 2, · · · , n}. Let span(a1, · · · , an) be

the linear space spanned by a1, · · · , an. For a matrix A, let λi(A) be the i-th largest eigenvalue

of A. Without special notification, let A−1 denote the pseudo inverse of matrix A. In the sequel,

the notation an = O (bn) denotes that there exists some positive constant c such that an ≤ cbn.

Let A4B denote the difference set of sets A and B. We use ∼= to indicate two algebraic structures

are isomorphic. Let a ∨ b denote max(a, b). We use Vd to denote the volume of the unit ball in d

dimensional space.
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1.2 Empirical Risk Minimization

We consider classical regularized empirical risk minimization problem, in which we are given a dataset

D := {(x1, y1), . . . , (xn, yn)} consisting of n i.i.d. samples drawn from an unknown probability measure

PX,Y on X × Y. Throughout this paper, we assume that X ⊂ Rd and Y ⊂ R are compact and non-

empty. To be more specific, we have ‖x‖2 ≤ 1 for all x ∈ X and |y| ≤ 1 for all y ∈ Y. We

desire to find a predictor f : X → Y. f is constraint in a Hilbert hypothesis function class H with

norm ‖f‖H. We measure the quality of our predictor on the training data via a nonnegative loss

function ` : Y × Y → R. Moreover, we denote the Bayesian risk as `∗ := minf∈H E[`(f(x), y)] and

its minimizer is f∗. Based on the definitions, the regularized empirical risk minimization problem

intends to minimize

L(f) + λ‖f‖2H =
1

n

n∑
i=1

`(f(xi), yi) + λ‖f‖2H (1)

over f ∈ H. L(f) aims to find an accurate predictor to fit Dn while the regularizer ‖f‖H prevents

over-fitting. Hyper-parameter λ, which is fixed beforehand by the user and possibly depending on n,

balances the trade-off between two parts.

In this paper, we consider H to be linear functionals in a Reproducing Kernel Hilbert Space

(RKHS) which corresponds to a positive semidefinite kernel function k : X × X → R. For each

positive semidefinite kernel k, we have k(x1, x2) = 〈φ(x1), φ(x2)〉. Here φ : X → H is called the

feature map. 〈·, ·〉 is the inner product in Hilbert space H. The dimension of H is denoted as h which

is potentially infinity. Then, optimization problem (1) turns into

L(fw) + λ‖w‖22 =
1

n

n∑
i=1

`(φ(xi)
>w, yi) + λ‖w‖22 (2)

where w ∈ H stands as a linear functional in H and fw = φ(x)>w. Representer theorem yields

that, given training dataset D, the optimization problem is equivalent to find β ∈ Rn and w =
1√
n

∑n
i=1 βiyiφ(xi) that minimize (2). If mild assumptions such as convexity and smoothness are posed

on `, the optimization problem (2) is smooth and convex. Thus, there exists an unique minimizer β and

w = 1√
n

∑n
i=1 βiyiφ(xi). For notation simplicity, we define empirical kernel matrix K =

(
k(xi, xj)

)
n×n

and feature map matrix Φ =
(
φ(x1), · · · , φ(xn)

)
h×n.

1.3 Randomized Sketching

In this section, we consider optimization of (3). Though there exist fast optimization methods for

certain ` such as hinge loss and logistic loss, no dual scheme to achieve time complexity lower than

O(n3T ) has been proposed for general loss function. Here, T is the iteration required by second

order methods which is of an ignorable double log order. Due to its smoothness and strict convexity

of (3), we adopt second order methods for numerical optimization. In this case, we use sketching

technique [Dri+11; YPW17] to obtain approximate solution and thus faster computation O(n2mT ).
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Instead of optimizing original parameter, we consider an approximation based on limiting the β in

Rn to an m-dimensional subspace of Rn, where m� n is a predetermined projection dimension. The

approximation is defined via a sketch matrix S ∈ Rn×m and the m-dimensional subspace is generated

by the column span of S. To be more specific, we substitute the n dimensional β by Sα and optimize

m dimensional α. Together, we reformulate optimization object (1) as follows.

L(fα) + λ‖fα‖H =
1

n

n∑
i=1

`(
φ(xi)

>ΦSα√
n

, yi) +
λ

n
α>S>Φ>ΦSα (3)

where fα(x) = φ(x)>ΦSα/
√
n.

Vast choice has been designed for the choice of S. Gaussian sketching, i.e., matrices S ∈ Rm×n

with i.i.d. Gaussian entries N (0, 1/m) are a classical random projection whose spectral and subspace

embedding properties are tightly characterized. Though the cost of forming the sketch K · S for

kernel matrix K requires O(n2m), parallel computation can significantly accelerate this process. In

this paper, we only consider Gaussian sketching, while we discuss potential usage of other sketching

methods in Section 4.

So far, we have presented the necessary notations and background knowledge. We now present

our algorithm which follows the straightforward logic of the Newton–Raphson method.

Algorithm 1: Sketching Empirical Risk Minimization

Data: Training data D := {(x1, y1), . . . , (xn, yn)}; Query x.

Parameters: Sketching dimension m; Sketching matrix S; Regularization λ.

Initialization: α0 ∼ N (0, Im).

for t = 1 to T do

Compute ∇
(
L(αt−1) + λ‖fαt−1‖H

)
and ∇2

(
L(αt−1) + λ‖fαt−1‖H

)
for (3);

Update αt = αt−1 −
[
∇2
(
L(αt−1) + λ‖fαt−1‖H

)]−1∇
(
L(αt−1) + λ‖fαt−1‖H

)
.

end

Result: The prediction fαT (x) = φ>(x)ΦSαT /
√
n.

1.4 Related Work

Our work also lies close to the studies of DP kernel learning. By adding Laplace noise to linear

functional in RKHS, [Rub+12; JT13] build DP kernel machines with utility guarantees. The utility

bound of [Rub+12] measures the difference between private and non-private functionals, which is

not comparable to ours. Our problem setting belongs to the non-interactive case of [JT13] while our

method is more straightforward and our analysis is more detailed. [HRW13] choose the noise level

added onto the output by measuring the sensitivity of the function in the RKHS norm. However,

their approach takes cubic computation time.
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2 Utility

In this section, we consider the utility guarantee for ERM with randomized sketching. Utility demands

that the solution to the perturbed problem must achieve small excess risk. We first introduce necessary

restrictions on the loss functions and kernels in Section 2.1 and present the main result in Section

2.2. An error analysis of the convergence rate is conducted in Section 2.3.

2.1 Basic Assumptions

To facilitate theoretical analysis, we adopt mild assumptions on ` which are satisfied by frequently

used ` such as logistic loss and least square loss.

Assumption 1 (Lipschitz Continuity). Assume that the loss function `(t, y) is second order Lip-

schitz with respect to t, i.e.

|∇`(t, y)−∇`(t′, y)| ≤ cL|t− t′|, for t, t′ ∈ [−1, 1].

for some universal positive constant cL.

Assumption 2 (Strong Convexity). Assume that `(t, y) is ∆-strongly convex with respect to t,

meaning that

`(t′, y) ≥ `(t, y) +
∂`(t, y)

∂t
(t′ − t) +

∆

2
(t′ − t)2

for t, t′ ∈ [−1, 1] and some universal positive constant ∆.

We also require the kernel k to satisfy the following conditions.

Assumption 3 (Bounded Kernel Function). For any x1, x2 ∈ X , we have k(x1, x2) ≤ κ for

constant κ > 0.

Assumption 4 (Eigenvalues of Kernel Matrix). Assume that the dimension of feature space h,

which potentially depends on sample size n, is finite. Moreover, for all eigenvalues of Φ>Φ denoted

as λ1, · · · , λh, there holds λh ≤ · · ·λ1 ≤ 1.

Note that we require H to be finite-dimensional. Though all kernels do not admit this property, a

great many of them can be well approximated as argued in [RR07]. For translation invariant kernels,

a random h-dimensional RKHS, which is constructed by the Fourier transform of the kernel function,

can uniformly approximate the original ones. Thus, we can use the approximated version of these

kernels, such as the commonly used RBF kernel and Laplace kernel. In fact, the Assumption 1-4 are

commonly required for DP-ERM analysis [CMS11; Rub+12; BST14; WYX17; Bas+19].
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2.2 Main Result

Now we present the convergence bound of the excess risk of the estimator returned by Algorithm 1.

Theorem 5 (Utility). Suppose Assumption 1 - 4 hold. Let fαT be the output of Algorithm 1 with

T � log log n. Φ is the feature map matrix of i.i.d. sample D ∼ PX,Y . For some constant C ∈ (0, 1),

if we choose (C ∨ 2/3)h ≤ m ≤ h and λ �
√∑h

i=bChc+1 λi, then with probability 1 − 2e−2m − 2/n2,

we have

E[`(fαT (x), y)]− `∗ ≤ 1√
n

+

√√√√ h∑
i=bChc+1

λi

where λi is the i-th singular value of Φ for i = 1, · · · , h.

The theorem states that, if we properly choose an RKHS dimension h and a sketching dimension

m, the excess risk of the estimation fαT can be controlled by the tail eigenvalues λbChc+1, · · · , λh.

As illustrated in [Bra05], these quantities will converge to zero as h grows to infinity with n. The

convergence rate is decided by the decay speed of the kernel’s tail eigenvalues. For instance, the

polynomial kernel with order h has eigenvalues that decay quickly. Thus, its excess risk can achieve

convergence rate O(e−h). In contrast, for kernels with polynomial decay, such as the Sobolev kernel,

each of its eigenvalues λi is of order O(j−p) with p = 2. Thus, the upper bound of excess risk will

be of order O(h−1/2), which is relatively slow. For the Cauchy kernel, which also admits polynomial

decay but with p = 1, the upper bound even fails to converge.

2.3 Error Analysis

In this section, we conduct our error analysis for Theorem 5 by decomposing the excess risk into

several parts that are intuitively associated with approximation error and optimization error. We

first define two instrumental quantities used in the decomposition. Let α̂ be the minimizer of (3), i.e.

L(f̂) + λ‖f̂‖H = min
α
L(fα) + λ‖fα‖H. (4)

Also, let f be the optimal solution to the original problem (1), i.e.

L(f) + λ‖f‖H = min
f∈H

L(f) + λ‖f‖H. (5)

We rely on the following decomposition.

E[`(fαT (x), y)]− `∗ =E[`(fαT (x), y)]− L(fαT )︸ ︷︷ ︸
A

+L(fαT ) + λ‖fαT ‖H − L(f̂)− λ‖f̂‖H︸ ︷︷ ︸
B

+ L(f̂) + λ‖f̂‖H − L(f)︸ ︷︷ ︸
C

+L(f) + λ‖f‖H − L(f∗)− λ‖f∗‖H︸ ︷︷ ︸
≤0

(6)

+ L(f∗)− `∗︸ ︷︷ ︸
D

+λ‖f∗‖H − λ‖fαT ‖H − λ‖f‖H
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Besides the remaining terms, each part of the decomposition has its interpretation. The term A

and D represent the discrepancy between population level loss and empirical level loss. They arise

because we turned the problem of bounding the population excess risk into bounding their empirical

counterparts. The existence of term B is due to the fact that we can not optimize problem (3) exactly.

Thus, we need to control the difference between the output of Algorithm 1 and the global minimizer

(4). It is referred to as the optimization error. The term C is called the approximation error. It

depicts the difference between the solution of the original problem, i.e. (1) and the sketched problem,

i.e. (3). The next term is controlled naturally via the definition of f in 5. In what follows, we control

these terms separately.

2.3.1 Control Term A and D

Lemma 6. Suppose Assumption 1 - 3 hold. Let f̂ be defined in (4). Then we have

E[`(fαT (x), y)]− L(fαT ) .

√
log n

n

with probability 1− 1/n2.

Lemma 7. Suppose Assumption 1 - 3 hold. Let f∗ ∈ H be the minimizer for `∗. Then we have

E[`(f∗(x), y)]− L(f∗) .

√
log n

n

with probability 1− 1/n2.

2.3.2 Control Term B

Lemma 8. Suppose Assumption 1 - 3 hold. Let fαT (x) be the output of Algorithm 1. Let f̂ be defined

in (4). If we choose T � log log n, then we have

L(fαT ) + λ‖fαT ‖H − L(f̂)− λ‖f̂‖H .
1

n
.

2.3.3 Control Term C

Lemma 9. Suppose Assumption 1 - 3 hold. Let f̂ and f be defined in (4) and (5), respectively. For

some constant C < 1, let (C ∨ 2/3)h ≤ m ≤ h. Then we have

L(f̂)− L(f) . λ+

√√√√ h∑
i=bChc+1

λi

with probability at least 1− 2e−2m.
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2.4 Comments

2.4.1 Comments on the Convergence Rate

The convergence rate are dominated by two terms which are
√∑h

i=bChc+1 λi and 1√
n

. The former

term comes from approximation error. For a Gaussian sketching matrix S, S>S can approximate Ih,

i.e. bChc of its eigenvalues are close to 1 with high probability. As a result, the solution to (1) and

(3) holds identical on a subspace with dimension bChc. The difference on the remaining h − bChc
is controlled by the smallest eigenvalues of Φ and thus forms

√∑h
i=bChc+1 λi. Note that we can

not further improve this result for general `. For least square loss, whose first-order term of Taylor

expansion with respect to f(x) vanishes, this rate can be improved to
∑h

i=bChc+1 λi, as is derived in

[YPW17].

The term 1√
n

comes from Lemma 6 and 7, where we used theoretical tools from empirical process

[VVW96; Wai19]. To be specific, a Talagrand-type inequality [Tal94] is established such that the dif-

ference between the population loss and empirical loss is controlled by the complexity of the potential

function space H. In fact, this rate can also be improved by using advanced theoretical tools such

as local Rademacher complexity [BBM05]. As illustrated in [BBM05; YPW17], the optimal rate is

the ”critical radius” of kernel k, which is generally smaller than 1√
n

. Besides maintaining the clarity

of our proof, the reason that we do not adopt these techniques is that 1√
n

is usually dominated by√∑h
i=bChc+1 λi. Thus, it is unnecessary to make this rate faster.

Note that in [YPW17], the above-mentioned rates meet. Our results do not achieve a balanced

trade-off between different error terms. We are capable of achieving the best trade-off by choosing

large m and h. However, doing so yields a privacy guarantee with order O(1), as illustrated in the

next section. To provide a privacy guarantee that is able to converge to zero, we must sacrifice the

utility property.

3 Privacy

In this section, we provide a detailed analysis of the privacy guarantee of our algorithm. We first

provide the main results in Section 3.1 and some comments in Section ??. In Section 3.2, we intuitively

illustrate how our mechanism brings differential privacy. In Section 3.3 and 3.4, we introduce the

Grassman manifold and its properties which will be the mathematical foundation of our analysis for

privacy. The road map of its proof is presented in Section 3.5.

3.1 Main Results

To be self-contained, we give a definition of approximate differential privacy as follows. We say two

data sets D and D′ are neighboring data sets if they differ in one entry (that is, |D4D′| = 2).

Definition 10 (Approximate Differential Privacy [Dwo+06a; Dwo+06b]). An algorithm

A : X n → Y is (ε, δ)-differentially private (i.e., it satisfies approximate differential privacy) if, for all
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neighboring databases X,X ′ ∈ X n, and all T ⊆ Y

P[A(X) ∈ T ] ≤ eεP
[
A
(
X ′
)
∈ T

]
+ δ

To facilitate theoretical analysis, we adopt mild assumptions on the optimization object. Note

that for general loss function ` such as logistic loss and least square loss, the assumption is naturally

satisfied.

Assumption 11 (Gradient Convexity). We assume that ‖∇wJ(fw,D)‖22 is a ∆̃- strongly convex

function with respect to w, meaning that the smallest eigenvalue of its Hessian matrix is larger than

the positive constant ∆̃.

With the additional assumption, we now present our main result for privacy guarantee.

Theorem 12 (Privacy). Suppose Assumption 1- 4 and 11 hold. Given a dataset D and query x,

the output of Algorithm 1, denoted as fαT (x) is (ε, δ) differentially private, i.e. for any measurable

set T ∈ R, we have

P[fαT (x) ∈ T |D] ≤ eεP[fαT (x) ∈ T |D′] + δ

with ε and δ specified as

ε = (64cL
√
κ)C−1

h (h−m)mn−1/2+ν + (32cL
√
κ+ 2

√
κ)C−2

h n−1/2+2ν

δ = Vd4
dC−dmh(m−1)/2(2π)−h/2nν(m−h)m/2−d/2

3.2 Perturbation Mechanism

As mentioned in the first section, there are three types of privacy mechanisms, that are gradient

perturbation, output perturbation, and objective perturbation. Our proposed mechanism is closer to

objective perturbation. Both mechanisms distort the non-private optimization object by a randomly

generated matrix (vector) in order to shift the solution around the original solution. The perturbation

matrix (vector) is carefully designed. On one hand, the distortion should be mild such that the utility

of the shifted solution is kept. On the other hand, regarding the shifted solution as a random function

of the perturbation matrix, the distribution of the solution should be adequately spread out to provide

a privacy guarantee. In [CM08], the optimization object 1
n

∑n
i=1 `(φ(xi)

>w, yi)+λ‖w‖22 is added with

term w · b where b is a vector consisting of independent Laplace random variables. In other words,

the gradient of the object for all w is added with a fixed vector b. An illustrative example is provided

to show the privacy mechanism of classical objective perturbation in [CMS11].

As shown in Figure 1, a subtle shift occurs to the loss surface due to the perturbation on the

optimization target, which brings a slight move to the optimal solution. To ensure both privacy and

utility, the variance of Laplace perturbation is carefully designed such that the perturbed optimal
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(a) Loss surface for the original problem.
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(b) Loss surface for the perturbed problem.

Figure 1: The comparison of contour plots for classical objective perturbation. The yellow star is the

minimum of the corresponding surface.

solutions will not be too far from the original solution while the migration is enough to confuse outside

attackers.

The mechanism in Algorithm 1 follows an analogous logic. However, our mechanism is intrinsically

different from theirs. The object in (2) search for solution ŵ in {Φβ|β ∈ Rn} with dimension n.

However, (3) search for solution in the space {ΦSα|α ∈ Rm}. In other words, the set of feasible

solutions to (3) is a subset of those to (2). Thus, the solution to (3) is shifted by the randomly

generated subspace associated with S and its privacy is preserved. The intuition for our mechanism

is illustrated in Figure 2. In Figure 2, two pink lines are induced by different random matrices

S. Thus, the corresponding constraint optimal solutions, which are marked with yellow stars, are

different.

The distribution of subspace, as well as the optimal solution in it, are decided completely by

the random Gaussian matrix S. Therefore, the main difficulty in showing privacy is computing the

distribution of subspaces.

3.3 Random Projected Subspace

In this section, we introduce theoretical tools that arise from differential geometry. The topological

space of all linear p-dimensional subspaces in Rq for p ≤ q, denoted as Gr(p, q), is known as Grass-

mannian or Grassman Manifold [MS; KRB97]. The Grassman Manifold is naturally endowed with

a Haar measure [Haa33] which is translation invariant under unitary transformation in Rq. [CC03]

developed a thorough analysis for distributions on Grassmannian under different sampling schemes.
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Figure 2: Comparison of the subspaces of feasible solutions. On the contour plot of the loss surface,

the pink line represents a one-dimensional subspace of feasible solutions to problem (3). Subspaces

on the left and right are induced by different S. The yellow star stands for the optimal solution in

the corresponding subspace.

In our case, the subspace in which α is optimized within is the span of columns of ΦS. The distribu-

tion of ΦS is called Rectangular Matrix-Variate Distribution [CC03, Section 2.3], the matrix version

of Gaussian distribution. Grassmannian serves as a perfect tool for quantifying the distribution of

subspaces. However, as illustrated in Figure 2, we would like to deal with affine spaces, i.e. subspaces

with intercept. Thus, we need to generalize Grassmannian to affine subspaces.

The topological space of all affine p-dimensional subspaces in Rq, denoted as Graff(p, q), is called

Affine Grassmannian [KRB97; LWY21]. Affine Grassmannian naturally inherits most merits of

Grassimannian including its Haar measure [LWY21]. Let gp,q denote an element in Graff(p, q). Let

γp,q be the Haar measure on Graff(p, q) which is unique up to a constant. Without loss of generality,

let
∫

Graff(p,q) dγ
p,q = 1.

It is desirable to uniquely represent elements of Graff(p, q) as actual matrices instead of an abstract

set of affine spaces. Especially, an explicit representation in Euclidean space is a prerequisite for

discussing probability distributions on Graff(p, q). We follow the well-known representation results

[Nic20; LWY21] to write the topology spaces as the set of rank-p orthogonal projection matrices and

a vector orthogonal to the column space of the matrix:

Graff(p, q) ∼=
{

[P, b] ∈ Rq×(q+1) : P> = P 2 = P, tr(P ) = p, Pb = 0
}
.

Though named as orthogonal, P is not an orthogonal matrix except for P = In. Note that rank(P ) =

tr(P ) for an orthogonal projection matrix P . With this definition, we use [P, b], which is called
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projection affine coordinates, to represent points on Graff(p, q). Let gp,qP,b denote the element in

Graff(p, q) corresponding to [P, b].

To make the space we are optimizing α an affine space, we need an intercept. Thus, we define

an augmented problem. To be specific, let S be a n × (m + 1) Gaussian sketching matrix and let

α ∈ Rm have one fixed entry. Without loss of generality, we fix αm+1 = 1. In other words, we solve

the optimization problem

min
α∈Rm+1,αm+1=1

L(fα) + λ‖fα‖H.

For notation simplicity, we denote the optimization object for any function f and training dataset D
as J(f,D) = L(f) + λ‖f‖H. Thus, the above optimization problem can be rewritten as

min
α∈Rm+1,αm+1=1

J(fα,D). (7)

Note that setting αm+1 = 1 does not affect any conclusion about fα derived before since the approx-

imation power of kernel functions is not related to the intercept term. See [SC08] for discussions of

intercept in kernel machines. With these preparations, the following result depicts the probability

distribution of the subspaces gm,hP,b .

Lemma 13. Given dataset D, let S be a Gaussian sketching matrix. Then, the density of element

gm,hP,b is given by

p(gm,hP,b ) =
mhm/2

∏
λi>0 λi(Π)

(2π)h/2
∣∣Σ− (Σ− Ih)P

∣∣m/2 · exp
(
− b>Π b

)
.

Here, Σ is the h×h diagonal matrix with singular value of 1√
n

Φ ordered decreasingly on its diagonal.

Π is the pseudo inverse of (Ih − P )Σ(Ih − P ).

3.4 Bijection Between Subspaces and Optimization Solution

One may notice that there is no bijection gm,hP,b and w since they have different cardinalities. In fact,

the cardinality of gm,hP,b can be explicitly calculated by Graff(m,h) ∼ R(h−m)·(m+2) ([LWY21]). An

illustration is provided in Figure 3. The figure considers optimization in one-dimensional subspaces

in R3. The colorful surface parameterized by z = x2 + y2 represents an equipotential surface. Both

black lines pass (1
2 ,

1
2 ,

1
2) and are perpendicular to the normal vector of the surface at this point. Due

to the convexity of the surface, both black lines induce the same optimal solution (1
2 ,

1
2 ,

1
2) but they

associate to different g1,3
P,b.

Thus, we need to identify the quotient space of Graff(m,h) by Rh, i.e. a collection of gm,hP,b that

induce the same w. We formally define this class of gm,hP,b as follows.

Definition 14 (w-Optimal). For gm,hP,b ∈ Graff(m,h) and dataset D, we say it is w-optimal if

J(fw,D) = min
w̃∈gm,hP,b

J(fw̃,D).
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Figure 3: Illustration of different affine spaces that induce the same solution.

We depict the gm,hP,b that potentially induces w by the following property.

Definition 15 (w-Inducible). For gm,hP,b ∈ Graff(m,h) and dataset D, we say it is w-inducible if

P∇wJ(fw,D) = 0 and (Ih − P )w = b.

The first condition in Definition 14 requires that the direction of gm,hP,b belongs to the tangent space

of the loss surface at w. The second condition identifies the intercept term. The following lemma

reveals that these definitions are actually equivalent.

Lemma 16 (Equivalence of w-Optimal and w-Inducible). Suppose Assumption 1 - 3 hold.

Then, for each w ∈ Rh, a subspace gm,hP,b is w-Optimal if and only if it is w-Inducible.

As a result, we denote collection of all w-optimal gm,hP,b , equivalently all w-inducible gm,hP,b , as Gw(D)

for each w ∈ Rh. This can be written rigorously as

Gw(D) :=

{
gm,hP,b | J(fw,D) = min

w̃∈gm,hP,b

J(fw̃,D)

}
. (8)

Lemma 16 implies that optimizing within the affine subspace gm,hP,b ∈ Gw(D) leads to optimal solution

w. Meanwhile, for each w, all m dimensional affine subspaces that lead to the final output of w belong

to Gw(D).

The definition of Gw(D) is beneficial from two perspectives. On one hand, Definition 14 explains

Gw(D) such that it is the collection of subspaces that induce optimal solution w. This definition is

conceptually straightforward. On the other hand, Definition 15 provides explicit conditions that we

can verify for each pair of w and gm,hP,b . This definition is computationally convenient. Lemma 16

unifies these two properties and facilitates the identification of the gm,hP,b s that induce w. Intuitively,

the density of w is the integral of the density of gm,hP,b contained in Gw(D). Thus, this identification is

an important procedure for evaluating p(w|D).

12



3.5 Error Analysis

In this section, we provide useful lemmas for proof of Theorem 12. We first construct a region ∆n

belonging to H and show that the probability of the solution of (7) falling outside of ∆n is low, as

will be shown in Lemma 17. For any w ∈ ∆n, it is privacy-preserving as will be argued in Lemma 18.

Without loss of generality, it suffices to consider Xw = {w|‖w‖2 ≤ 1}. The region ∆n is specified

as the collection of w with a large gradient, namely

∆n :=
{
w
∣∣ ‖∇wJ(fw,D)‖2 ≥

1√
n

}
∩ Xw (9)

and consequently ∆c
n = Xw/∆n.

Lemma 17. Suppose Assumption 1- 4 and 11 hold. Let ∆n be defined in (9). Then for dataset D,

there holds

P[w ∈ ∆c
n|D] ≤ δ

where δ is specified as δ = Vd4
dC−dmh(m−1)/2(2π)−h/2nν(m−h)m/2−d/2.

Lemma 18. Suppose Assumption 1- 4 hold. Let ∆n be defined in (9). Let D and D′ be neighboring

datasets. Then for any T which is a subset of ∆n, we have

P[w ∈ T |D] ≤ eεP[w ∈ T |D′]

where ε is specified as ε = (64cL
√
κ)λ−1

h (h−m)mn−1/2 + (32cL
√
κ+ 2

√
κ)λ−2

h n−1/2 .

4 Discussion

We typically consider Gaussian sketching, while many other sketching methods, such as SRHT and

count sketch, also have strong subspace embedding properties and are faster to compute. As a special

type of sketching, sub-sampling methods have favorable computation and space complexity while

they may perform poorly under certain assumptions. Both sub-sampling and Gaussian sketching are

shown to induce DP. Moreover, [Bas+17] showed that the noisy count sketch can be used for private

frequency estimation. Thus, a prospective future work would be investigating DP induced by SRHT

and count sketch.

5 Proofs

5.1 Utility Proofs Related to Section 2

5.1.1 Technical Lemmas

In this section, we provide technical lemmas that are necessary for the subsequent analysis.
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Lemma 19. Suppose Assumption 1- Assumption 3 hold. the SVD decomposition of matrix Φ/
√
n is

Q1Σ1/2Q2, where Σ1/2 is a h × h matrix with eigenvalues of Φ decreasingly sorted on its diagonal,

namely λ
1/2
1 , λ

1/2
2 , · · · , λ1/2

h . Q1 and Q2 are h×h and n×n orthogonal matrix, respectively. For some

constant C which will be specified in proof, let ΦA =
(
Q>1 Φ

)
1:bChc,: be the first bChc rows of Q>1 Φ and

ΦB =
(
Q>1 Φ

)
(bChc+1):h,:

be the rest of the rows of Q>1 Φ. Then if we take (Ch∨ 2h/3) ≤ m ≤ h, there

holds

‖(ΦAΦ>A)−1/2ΦASS
>Φ>A(ΦAΦ>A)−1/2 − IbChc‖2 ≤ 1/2, ‖ΦBS‖2 ≤ λ1/2

bChc+1

with probability 1− 2e2m.

To conduct our analysis, we need to recall the definitions of Rademacher complexity which is

broadly used in theoretical machine learning [VVW96; Wai19].

Definition 20 (Rademacher Complexity). Given function class F , the Rademacher complexity

of F is defined as

Rn(F) = Eε

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣ | x1, · · · , xn

]
where {εi}ni=1 are i.i.d. Rademacher variables.

Rademacher complexity measures the richness of a class of real-valued functions with respect to a

probability distribution. Given a set of data, it picks f ∈ F to maximize the product for each group of

εi, i = 1, · · · , n. When the function class is rich enough, it contains functions that can appropriately

adapt for each group of Rademacher random variables. When the function class is rather restricted, it

can not shatter the data and thus have small Rn(F). In our case, our goal is to bound the complexity

of the kernel class, which is formalized as follows.

Lemma 21 (Rademacher Complexity of Kernel Class). Suppose Assumption 3 holds. Let F
be the function class of kernel, i.e. F = {f(x)|f(x) = 1√

n

∑n
i=1 βik(xi, x)}. Then

Rn(F) ≤
√
κ supf∈F ‖f‖F√

n
.

Lemma 22 (Rademacher Complexity of Sketched Kernel Class). Suppose Assumption 3

holds. Let F̃ be the sketched kernel class, i.e. F̃ = {f(x)|f(x) = 1√
n

∑n
i=1(Sα)ik(xi, x)} with Gaus-

sian sketching matrix S. Then

Rn(F̃) ≤
κ supf∈F ‖f‖F̃√

n
.

Lemma 23 ([LT91]). Let g be Lipschitz, namely |g(x)− g(y)| ≤ L|x− y|. Then, for every class F ,

Rng ◦ F ≤ LRnF ,

where g ◦ F := {g ◦ f : f ∈ F}.
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Lemma 24 (Error Bound by Rademacher Complexity). Let F be a class of functions that map

X into [a, b]. Assume that there is some r > 0 such that for every f ∈ F ,E
[
f (x)2

]
≤ r. Then, with

probability at least 1− 1/n2,

sup
f∈F

(
E[f(x)]−

n∑
i=1

f(xi)

)
≤ 4RnF +

√
2r log n

n
+ 2(b− a)

log n

n
.

The opposite direction is also true, i.e.

sup
f∈F

(
n∑
i=1

f(xi)− E[f(x)]

)
≤ 4RnF +

√
2r log n

n
+ 2(b− a)

log n

n
.

5.1.2 Proofs Related to Section 2.3

Without loss of generality, we assume that

‖f∗‖H =
β∗>Φ>Φβ∗√

n
≤ 1.

Since we have

|f∗(x)| ≤ |φ
>(x)Φβ|√

n
≤ ‖φ(x)‖2‖Φβ∗‖2√

n
≤ κ,

it is fair to assume that there exists a constant B such that |f(x)| ≤ B and |f̂(x)| ≤ B. This means

if the ground truth is bounded, any fitting that is bounded by B is enough. In the subsequent proof,

we define several α† and f †(x) = φ†(x)ΦSα†/
√
n for temporary technical usage. The meaning of each

pair of (α†, f †) may vary between proofs.

Proof of Lemma 6. Since ‖f‖∞ ≤ B, we have E
[
`(f(x), y)2

]
≤ c2

LB
2 by Assumption 1. Then, ap-

plying the first argument of Lemma 24 to the function class F` = {`(f(x), y)|f(x) = 1√
n

∑n
i=1 βik(xi, x)}

yields

L(f∗)− `∗ . Rn(F`) +

√
log n

n
.

Lemma 22 and 23 together leads to

Rn(F`) ≤ cLRn(F) .
1√
n

which completes the proof. Here we used Assumption 1.

Proof of Lemma 7. Since ‖f‖∞ ≤ B, we have E
[
`(f(x), y)2

]
≤ c2

LB
2 by Assumption 1. Then, ap-

plying the second argument of Lemma 24 to the function class F` = {`(f(x), y)|f(x) = 1√
n

∑n
i=1 βik(xi, x)}

yields

L(f∗)− `∗ . Rn(F`) +

√
log n

n
.
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Lemma 21 and 23 together leads to

Rn(F`) ≤ cLRn(F) .
1√
n

which completes the proof. Here we used Assumption 1.

Proof of Lemma 8. Since the optimization object (3) is strongly convex, the classical analysis of

Newton’s method yields that, with O(log log ε−1) iterations, there holds

L(fαT ) + λ‖fαT ‖H − L(f̂)− λ‖f̂‖H ≤ ε.

Taking ε = 1
n brings the desired result.

Proof of Lemma 9. We first decompose φ into two parts: one is associated with the principal

eigenvalues and the other is associated with the remainder. To be specific, the SVD decomposition of

matrix Φ/
√
n is Q1Σ1/2Q2, where Σ1/2 is a h×h matrix with eigenvalues of Φ decreasingly sorted on its

diagonal, namely λ
1/2
1 , λ

1/2
2 , · · · , λ1/2

h . Q1 and Q2 are h×h and n×n orthogonal matrix, respectively.

Then, we define ΦA =
(
Q>1 Φ

)
1:bChc,: be the first bChc rows of Q>1 Φ and ΦB =

(
Q>1 Φ

)
(bChc+1):h,:

be

the rest of the rows of Q>1 Φ. φA and φB are defined analogously by
(
Q>1 φ

)
1:bChc and

(
Q>1 φ

)
(bChc+1):h

.

There exists a unique β such that f(x) = φ>(x)Φβ/
√
n is the minimizer of (1). Define

α† = S>Φ>A(ΦASS
>Φ>A)−1ΦAβ

where we are almost surely guaranteed with invertibility of ΦASS
>Φ>A if m > bChc. Let f †(x) =

φ>(x)ΦSα†/
√
n. Note that the RKHS norm of f † has

‖f †‖H = α†TS>Φ>ΦSα† =
β∗>Φ>AΦAβ

n
≤ ‖Φβ‖

2
2

n
≤ 1.

Then we have

|f †(x)− f∗(x)| = 1√
n
|φ>A(x)ΦASα

† + φ>B(x)ΦBSα
† − φ>A(x)ΦAβ − φ>B(x)ΦBβ|

≤ 1√
n
|φ>B(x)ΦBSα

†|+ 1√
n
|φ>B(x)ΦBβ|

We control the two terms separately. The latter term is controlled by Cauchy inequality as

1√
n
φ>B(x)ΦBβ ≤

1√
n
‖φB(x)‖2‖ΦBβ‖2 ≤

1√
n
‖φB(x)‖2‖Φβ‖2 ≤ ‖φB(x)‖2.

The former term is controlled as follows.

|φ>B(x)ΦBSα
†| =

∣∣φB(x)ΦBSS
>Φ>A(ΦASS

>Φ>A)−1ΦAβ
∣∣

≤ ‖φB(x)‖2‖ΦBS‖2‖S>Φ>A(ΦAΦ>A)−1/2‖2
· ‖
[
(ΦAΦ>A)−1/2ΦASS

>Φ>A(ΦAΦ>A)−1/2
]−1‖2‖(Φ>AΦA)−1‖2‖ΦAβ‖2

≤ ‖φB(x)‖2 · λ1/2
bChc ·

3

2
· 2 · λ−1/2

bChc ·
√
n
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where in the last inequality we used Lemma 19. Note that the above inequality holds with probability

at least 1− 2e−2m. Thus, we have

|f †(x)− f(x)| . ‖φB(x)‖2.

Next, we prove the intended result. By Assumption 1, we have∣∣∣∣ 1n
n∑
i=1

`(f †(x), yi)−
1

n

n∑
i=1

`(f(x), yi)

∣∣∣∣ . 1

n

n∑
i=1

|f †(xi)− f(xi)| .
1

n

n∑
i=1

‖φB(xi)‖2.

Then, there holds

∣∣∣∣ 1n
n∑
i=1

`(f †(x), yi)−
1

n

n∑
i=1

`(f(x), yi)

∣∣∣∣ .
√√√√ 1

n

n∑
i=1

‖φB(xi)‖22

=
√

tr(Φ>BΦB)/n =

√√√√ h∑
i=bChc+1

λi (10)

By definition of α̂, we have

1

n

n∑
i=1

`(f̂(xi), y) + λ‖f̂‖H ≤
1

n

n∑
i=1

`(f †(xi), y) + λ‖f †‖H

which, together with (10), yields

1

n

n∑
i=1

`(f̂(xi), y)− 1

n

n∑
i=1

`(f(xi), y) + λ‖f̂‖H . λ+

√√√√ h∑
i=bChc+1

λi.

5.1.3 Proof of the Main Result

Proof of Theorem 5. Remind the error decomposition (6). Combining Lemma 6, 7, 8, and 9, there

holds

E[`(fαT (x), y)]− `∗ .
√

log n

n
+

1

n
+ λ+

√√√√ h∑
i=bChc+1

λi + λ‖f∗‖H − λ‖fαT ‖H − λ‖f‖H

.

√
log n

n
+ λ+

√√√√ h∑
i=bChc+1

λi

with probability 1− 2e−2m − 2/n2.
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5.2 Privacy Proofs Related to Section 3

5.2.1 Technical Lemmas

In this section, we provide technical lemmas that are necessary for the subsequent analysis.

Lemma 25. Suppose Assumption 3 and 4 hold. For dataset D, let its feature map matrix be Φ and

Σ be defined in Theorem 12. Also, let the orthogonal projection matrix P be defined in Definition 15

for any w. For neighboring dataset D′ of D, let Φ′, Σ, and P ′ be defined analogously. Then we have

‖Σ− Σ′‖2 ≤
2
√
κ√
n

and consequently

λi(Σ− (Σ− Ih)P )− λi(Σ′ − (Σ′ − Ih)P ′) ≤ 4
√
κ√
n

+ 2‖P − P ′‖2

for i = 1, · · · , h. Here λi(Σ− (Σ− Ih)P ) is the i-th eigenvalue of Σ− (Σ− Ih)P .

Lemma 26. Suppose Assumption 3 and 4 hold. For orthogonal projection matrix P , we have

λh(Σ)

2
≤ λi(Σ− (Σ− Ih)P ) ≤ 2

for i = 1, · · · , h. Moreover, there are m of eigenvalues of Σ− (Σ− Ih)P that are exactly 1.

Lemma 27. Suppose Assumption 1 and 3 hold. Then for neighboring datasets D and D′, we have

‖∇wJ(w,D)−∇wJ(w,D′)‖2 ≤
2cL
√
κ

n
.

Lemma 28. Suppose Assumption 1 and 3 hold. For neighboring datasets D and D′, let Gw(D) and

Gw(D′) be defined in (8). Then, there exists a bijection U between Gw(D) and Gw(D′) such that, for

any gm,hP,b ∈ Gw(D) and its image gm,hP ′,b′ = U(gm,hP,b ), there holds

‖P − P ′‖2 ≤
16cL

√
κ√

n
.

5.2.2 Proofs Related to Section 3.3

Proof of Lemma 13. By Bayes rule, there holds

p(gp,qP,b|D) = p(P, b|D) = p(P |D) · p(b|P,D).

We deal with two terms separately. Since Φ is a h × n matrix with h < n, the SVD decomposition

of Φ can be written as UΛV where U and V are h × h and n × n orthogonal matrix, respectively.

Λ is a h × n matrix whose diagonal is filled with eigenvalues of Φ decreasingly. Notice that entries

in the h + 1, · · · , n-th rows of Λ are all zero. Let Σ = Λ>Λ. Σ is thus a h × h diagonal square
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matrix with singular values of Φ, which are supposed to be sorted decreasingly. Since V is an or-

thogonal square matrix, V S1:m is distributed identically to S1:m as rectangular matrix-variate normal

Nn,m(0, In/m, Im) [CC03, Section 1.5.3]. The density function of p×q matrix Y with the rectangular

matrix-variate normal distribution Np,q(M,Σ1,Σ2) is given by

p (Y |M,Σ1,Σ2) =
|Σ1|−q/2 |Σ2|−p/2

(2π)pq/2
exp

[
−1

2
tr
(

Σ
−1/2
2 (Y −M)>(Y −M)Σ

−1/2
2

)]
for positive definite Σ1 and Σ2. Then ΦS1:m = UΛV S1:m is distributed identically toNh,m(0,Λ>U>UΛ/m, Im) =

Nh,m(0,Σ/m, Im). With this distribution of ΦS1:S , the corresponding density of P can be explicitly

computed. According to [CC03, Remark 2.4.11], the density of associated rank m orthogonal projec-

tion matrix P is given by

p(P |D) = mhm/2|Σ|−m/2|Ih − (Ih − Σ−1)P |−m/2. (11)

Then we turn to the second term p(b|P,D). The distribution of b can be considered as a projection

from b0 ∼ N (0,Σ) onto the kernel space of P , i.e. {b|Pb = 0}. The projection can be written as

(Ih − P )b0. Thus the conditional density is given by b ∼ N (0, (Ih − P )>Σ(Ih − P )). Note that the

rank of Ih − P is h −m. That is to say, the distribution of b is a singular Gaussian on the kernel

space of P . The density function is given by

p(b|P,D) =

∏
λi>0 λi(Π)

(2π)h/2
exp

(
− b>Π b

)
where Π is the pseudo inverse of (Ih − P )>Σ(Ih − P ). This together with (11) yields

p(gm,hP,b ) =
mhm/2

∏
λi>0 λi(Π)

(2π)h/2
∣∣Σ− (Σ− Ih)P

∣∣m/2 · exp
(
− b>Π b

)
.

5.2.3 Proofs Related to Section 3.4

Proof of Lemma 16. (i) We first show that w-inducible implies w-optimal. According to [CC03,

Section 2.4.4], the set gm,hP,b is the same as {Pβ+w | β ∈ Rh}. Thus, the original optimization problem

min
w̃∈gm,hP,b

J(fw̃,D) is identical to solving the following optimization problem

min
β∈Rh

J(fPβ+b,D).

By definition 15, b = (Ih −P )w. Thus, we have Pβ + b = P (β −w) +w, which converts the problem

into

min
β∈Rh

J(fPβ+w,D)
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Since both `(f(x), y) and operator ‖f‖H is strictly convex with respect to f , the object J(·,D) is

strictly convex. As a result, there holds

J(fPβ+w,D) > J(fw,D) + (∇βJ(fPβ+w,D) |β=0)> (β − 0).

Moreover, let w̃ = Pβ + w. By the chain rule, there holds

∇βJ(fPβ+w,D) = ∇ww̃>∇w̃J(fw̃,D) = P>∇wJ(fw,D).

w-inducible implies that P>∇wJ(fw,D) = 0. Therefore, for all β ∈ Rh, we have

J(fPβ+w,D) > J(fw,D)

except for β = 0. Thus, the optimal solution to the optimization problem in Definition 14 is w, i.e.

gm,hP,b is w-optimal.

(ii) For the opposite direction, if gm,hP,b leads to w being the optimal solution, it is clear that

w ∈ gm,hP,b . Again we can write problem min
w̃∈gm,hP,b

J(fw̃,D) as

min
β∈Rh

J(fPβ+w,D)

with β = 0 being its optimal solution. By KKT necessary condition [BBV04], there holds

0 = ∇βJ(fPβ+w,D) |β=′= P>∇w̃J(fw̃,D).

For the second statement, note that P>b = 0. Thus, b is the projection on the kernel space of col(P ),

namely (Ih − P )w.

5.2.4 Proofs Related to Section 3.5

Proof of Lemma 17. Let w be the optimal solution of minw∈Rh J(fw,D). Consequently,∇wJ(fw,D)|w=w =

0. By Assumption 11, ‖∇wJ(fw,D)‖22 is strictly positive definite by some constant ∆̃. Thus we have

‖∇wJ(fw,D)‖22 ≥ 0 +
(
∇>w‖∇wJ(fw,D)‖22

) ∣∣∣
w=w

· (w − w) +
∆̃

4
(w − w)> · (w − w)

=
∆̃

4
(w − w)> · (w − w).

Here we used the fact that

∇w‖∇wJ(fw,D)‖22
∣∣
w=w

=
(
2 · ∇2

wJ(fw,D) · ∇wJ(fw,D)
) ∣∣
w=w

= 0.

Then the region {w | ‖∇wJ(fw,D)‖2 ≤ 1/
√
n} is an subset of the ellipse{

w

∣∣∣∣∆̃4 (w − w)> · (w − w) ≤ 1

n

}
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whose volume is Vd (4∆̃−1n−1)d/2. Reminding the density function in Lemma 13

p(gm,hP,b ) =
mhm/2

∏
λi>0 λi(Π)

(2π)h/2
∣∣Σ− (Σ− Ih)P

∣∣m/2 · exp
(
− b>Π b

)
where Π = (Ih − P )>Σ(Ih − P ). By Lemma 26, we have∣∣Σ− (Σ− Ih)P

∣∣ ≥ λh(Σ− (Σ− Ih)P )(h−m) ≥ λh(Σ)(h−m).

Also, by Assumption 4, we have ∏
λi>0

λi(Π) ≤ λh(Σ)−(h−m).

since Ih − P is a rank-(h−m) matrix. Also, since Π is semi-positive definite, we have

exp
(
− b>Π b

)
≤ 0.

Combining these pieces, we can bound p(gm,hP,b ) by

p(gm,hP,b ) ≤
mhm/2λ

−(h−m)(m+2)/2
h

(2π)h/2
.

As a consequence, the probability density of Gw(D) is bounded by

p(Gw(D)) =

∫
g∈Gw(D)

p(g)
dγm,h

dw

Thus, the density of each w, equivalently of each Gw(D), is also uniformly bounded by the quantity

of mh(m−1)/2(2π)−h/2nν(m−h)m/2. Together, these yields

P ({Gw(D), w ∈ ∆c
n}|D) ≤ Vd4dC−dmh(m−1)/2(2π)−h/2nν(m−h)m/2−d/2.

Proof of Lemma 18. It suffices to show that, for each w, we have

p(gm,hP,b |D)

p(gm,hP ′,b′ |D′)
≤ eε

for gm,hP,b and gm,hP ′,b′ given in Lemma 28. If so, there holds

P[w ∈ T |D]

P[w ∈ T |D′]
=

∫
g∈Gw(D),w∈T p(g)dγm,h∫
g′∈Gw(D′),w∈T p(g

′)dγm,h
≤ sup

p(gm,hP,b |D)

p(gm,hP ′,b′ |D′)
≤ eε.

The density function p(gm,hP,b |D) has three parts, and we deal with their ratios separately.
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(i) We first bound the determinant part, which is

|Σ− (Σ− Ih)P |
|Σ′ − (Σ′ − Ih)P ′|

=

∏h
i=1 λi(Σ− (Σ− Ih)P )∏h
i=1 λi(Σ

′ − (Σ′ − Ih)P ′)
. (12)

By Lemma 26, there are m eigenvalues that are exactly 1. For the rest eigenvalues, we provide an

upper bound for

λi(Σ− (Σ− Ih)P )

λi(Σ′ − (Σ′ − Ih)P ′)

for each i = 1, · · · , h. By Lemma 25, we have

λi(Σ− (Σ− Ih)P )

λi(Σ′ − (Σ′ − Ih)P ′)
≤1 +

λi(Σ− (Σ− Ih)P )− λi(Σ′ − (Σ′ − Ih)P ′)

λi(Σ′ − (Σ′ − Ih)P ′)

≤1 +
4
√
κ/
√
n+ 2‖P − P ′‖2

λi(Σ′ − (Σ′ − Ih)P ′)
.

The lower bound of λi in Lemma 26 yields

λi(Σ− (Σ− Ih)P )

λi(Σ′ − (Σ′ − Ih)P ′)
≤ 1 +

8
√
κ

λh
√
n

+
4‖P − P ′‖2

λh
.

Combining Lemma 28, we have

λi(Σ− (Σ− Ih)P )

λi(Σ′ − (Σ′ − Ih)P ′)
≤ 1 +

8
√
κ

λh
√
n

+
64cL

√
κ

λh
√
n
.

Bring this into (12), we have

|Σ− (Σ− Ih)P |
|Σ′ − (Σ′ − Ih)P ′|

≤
(

1 +
(8 + 64cL)

√
κ

λh
√
n

)h−m
and consequently

|Σ− (Σ− Ih)P |m/2

|Σ′ − (Σ′ − Ih)P ′|m/2
≤
(

1 +
(8 + 64cL)

√
κ

λh
√
n

)(h−m)m/2

≤ exp

(
(8 + 64cL)

√
κ

λh
√
n

(h−m)m

2

)
. (13)

(ii) Next, we bound the exponential part

exp
(
− b>

[
(Ih − P )>Σ(Ih − P )

]−1
b
)

exp
(
− b′>

[
(Ih − P ′)>Σ′(Ih − P ′)

]−1
b′
) .

We first give a bound on the matrix norm∥∥∥[(Ih − P )>Σ(Ih − P )
]−1 −

[
(Ih − P ′)>Σ′(Ih − P ′)

]−1
∥∥∥

2
.
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Basic matrix inversion leads to∥∥∥[(Ih − P )>Σ(Ih − P )
]−1 −

[
(Ih − P ′)>Σ′(Ih − P ′)

]−1
∥∥∥

2

≤
∥∥∥[(Ih − P )>Σ(Ih − P )

]−1
∥∥∥

2
·
∥∥∥[(Ih − P ′)>Σ′(Ih − P ′)

]−1
∥∥∥

2

·
∥∥∥(Ih − P )>Σ(Ih − P )− (Ih − P ′)>Σ′(Ih − P ′)

∥∥∥
2

(14)

By Lemma 26, we have∥∥∥[(Ih − P )>Σ(Ih − P )
]−1
∥∥∥

2
·
∥∥∥[(Ih − P ′)>Σ′(Ih − P ′)

]−1
∥∥∥

2
≤ 4

λ2
h

. (15)

For the last term, we use the following decomposition

(Ih − P )>Σ(Ih − P )− (Ih − P ′)>Σ′(Ih − P ′)

=(Ih − P )>Σ(Ih − P )− (Ih − P ′)>Σ(Ih − P )

+(Ih − P ′)>Σ(Ih − P )− (Ih − P ′)>Σ′(Ih − P )

+(Ih − P ′)>Σ′(Ih − P )− (Ih − P ′)>Σ′(Ih − P ′)

to get ∥∥∥(Ih − P )>Σ(Ih − P )− (Ih − P ′)>Σ′(Ih − P ′)
∥∥∥

2

≤‖P − P ′‖2‖Σ(Ih − P )‖2 + ‖Ih − P ′‖2‖Σ− Σ′‖2‖Ih − P‖2 + ‖(Ih − P ′)Σ′‖2‖P − P ′‖2
≤2‖P − P ′‖2 + ‖Σ− Σ′‖2

Combining Lemma 25 and Lemma 28, this becomes∥∥∥(Ih − P )>Σ(Ih − P )− (Ih − P ′)>Σ′(Ih − P ′)
∥∥∥

2
≤ 32cL

√
κ+ 3

√
κ√

n
. (16)

Bring (15) and (16) into (14), we have∥∥∥[(Ih − P )>Σ(Ih − P )
]−1 −

[
(Ih − P ′)>Σ′(Ih − P ′)

]−1
∥∥∥

2
≤ 128cL

√
κ+ 8

√
κ

λ2
h

√
n

.

Since b = (Ih − P )w and b′ = (Ih − P ′)w, we have

‖b− b′‖2 ≤ ‖P − P ′‖2‖w‖2 ≤
16cL

√
κ√

n
.

Also, we have apparently ‖b‖2 ≤ 1 since we only consider ‖w‖2 ≤ 1. Together, we have

b>
[
(Ih − P )>Σ(Ih − P )

]−1
b− b′>

[
(Ih − P ′)>Σ′(Ih − P ′)

]−1
b′

≤‖b− b′‖2
∥∥∥[(Ih − P )>Σ(Ih − P )

]−1
∥∥∥

2

(
‖b‖2 + ‖b′‖2

)
+
∥∥∥[(Ih − P )>Σ(Ih − P )

]−1 −
[
(Ih − P ′)>Σ′(Ih − P ′)

]−1
∥∥∥

2
‖b‖2‖b′‖2

≤64cL
√
κ

λh
√
n

+
128cL

√
κ+ 8

√
κ

λ2
h

√
n

. (17)
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where in the last inequality we used Lemma 26.

(iii) For the ratio of |Π| part, we analogously bound for

λi((Ih − P )>Σ(Ih − P ))

λi((Ih − P ′)>Σ′(Ih − P ′))

for i = 1, · · · , h. By Weyl’s Theorem [HJ12, Theorem 4.3.1], (16) yields that

λi((Ih − P )>Σ(Ih − P ))− λi((Ih − P ′)>Σ′(Ih − P ′))

≤
∥∥∥((Ih − P )>Σ(Ih − P ))− ((Ih − P ′)>Σ′(Ih − P ′))

∥∥∥
2
≤ 32cL

√
κ+ 3

√
κ√

n
.

Thus combining Lemma 26, we have

λi((Ih − P )>Σ(Ih − P ))

λi((Ih − P ′)>Σ′(Ih − P ′))
= 1 +

∥∥((Ih − P )>Σ(Ih − P ))− ((Ih − P ′)>Σ′(Ih − P ′))
∥∥

2

λi((Ih − P ′)>Σ′(Ih − P ′))

≤ 1 +
64cL

√
κ+ 6

√
κ

λh
√
n

The same argument in the proof of Lemma 26 yields only h −m eigenvalues that are non-zero.

Thus, we have ∏
λi>0 λi((Ih − P )>Σ(Ih − P ))∏
λi>0 λi((Ih − P ′)>Σ′(Ih − P ′))

≤(1 +
64cL

√
κ+ 6

√
κ

λh
√
n

)h−m

≤ exp

(
(64cL

√
κ+ 6

√
κ)(h−m)

λh
√
n

)
. (18)

With these conclusions, (13), (17) and (18) together yield the desired result that

p(gm,hP,b |D)/p(gm,hP ′,b′ |D
′) ≤ eε

where we have

ε =
(8 + 64cL)

√
κ

Ch

(h−m)m

2
n−1/2+ν +

32cL
√
κ

Ch
n−1/2+ν + +

32cL
√
κ+ 2

√
κ

C2
h

n−1/2+2ν .

This value is dominated by

ε ≤ 64cL
√
κ

Ch
(h−m)mn−1/2+ν +

32cL
√
κ+ 2

√
κ

C2
h

n−1/2+2ν

for sufficiently large n.
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5.2.5 Proof of the Main Result

Proof of Theorem 12. Consider w the final output of Algorithm 1. We know from Lemma 16 that,

given a fixed dataset D, there is a bijective between w and Gw(D). Let Gw(D) and Gw(D)′ be the

w-optimal set conditioned on D and D′ respectively. To show (ε, δ) differential privacy, we need to

compute the ratio of probability of outputting w ∈ T conditioned on dataset D and D′, where T is

any set in Rh . P (w ∈ T |D) can be written as

P (w ∈ T |D) = P ({Gw(D), w ∈ T }|D). (19)

By Lemma 18, we have

P (Gw(D)|D) ≤ eεP (Gw(D)|D′) (20)

for each w ∈ ∆n where ∆n is defined in (9). Moreover, we have P ({Gw(D), w ∈ ∆c
n}|D) ≤ δ by

Lemma 17. This together with (20) yield

P ({Gw(D), w ∈ T }|D) ≤ eεP ({Gw(D), w ∈ T }|D′) + δ.

This exactly gives (ε, δ) privacy in Definition 10 by bringing in (19).
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A Technical Proofs

A.1 Proofs of Results in Appendix 5.1.1

Proof of Lemma 19. We prove the two arguments separately.

(i) First, note that ΦAΦ>A is symmetric and thus (ΦAΦ>A)−1/2 is also symmetric. Then, there

holds

(ΦAΦ>A)−1/2ΦAΦ>A
(
(ΦAΦ>A)−1/2

)>
= (ΦAΦ>A)−1/2ΦAΦ>A(ΦAΦ>A)−1/2 = IbChc

which yields that (ΦAΦ>A)−1/2ΦA has orthogonal rows. With this, we begin to bound the operator

norm of the matrix Q = (ΦAΦ>A)−1/2ΦASS
>Φ>A(ΦAΦ>A)−1/2 − IbChc. Let

{
v1, . . . , vN

}
be a 1/2-

cover of the Euclidean sphere Sbchc−1; by standard arguments [Wai19], we can find such a set with

N ≤ e2bChc elements. Using this cover, a straightforward discretization argument yields

‖Q‖op ≤ 4 max
j,k=1,...,N

vj>Qvk = 4 max
j,k=1,...,N

ṽj>(S>S − In)ṽk,

where ṽj = Φ>A(ΦAΦ>A)−1/2vj ∈ Sn−1. Since each entry of S is an i.i.d. Gaussian, we can apply the

concentration result by using sub-exponential bounds [Wai19, Proposition 2.9] to obtain

P
[
ṽj>(S>S − In)ṽk ≥ 1/8

]
≤ c1e

−c2m, j, k = 1, · · · , N

for some constant c1, c2. Consequently, by the union bound, for any constant C ≤ c2/8, we have

P [‖Q‖op ≥ 1/2] ≤ c1e
−c2m+4bChc ≤ c1e

−8Cm+4Ch ≤ c1e
−2Cm ≤ e−2m

for sufficiently large m. Here we used the assume lower bound m ≥ 2h/3.

(ii) For notation simplicity, we use ΦB to denote the augmented feature matrix (0,Φ>B)>. For the

second argument, we want to bound the operator norm

‖ΦBS‖2 = ‖ΦBS‖2 = sup
u∈Sm−1,v∈E

v>Su.

where we define E =
{

Φ
>
Bw | ‖‖w‖2 ≤ 1

}
, and Sm−1 = {u ∈ Rm | ‖u‖2 = 1}. Again with standard

discretization arguments [Wai19], we can find a 1/2-cover
{
u1, . . . , uN

}
of the set Sm−1 of the set

with N ≤ e2m elements that guarantees

‖ΦBS‖2 ≤ 2 max
j∈[N ]

sup
v∈E

v>Suj

For each fixed uj ∈ Sm−1, consider the random variable supv∈E v
>Suj for j = 1, · · · , N . It is equal

in distribution to the random variable V (g) = 1√
m

supv∈E g
>v, where g ∈ Rn is a standard Gaussian

vector. For g, g′ ∈ Rn, we have∣∣V (g)− V
(
g′
)∣∣ ≤ 2√

m
sup
v∈E

(g − g′)>v ≤ 2√
m
‖g − g′‖2‖v‖2.
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Definition of E yields that ‖v‖2 ≤ ‖ΦB‖2 ≤
√
λbChc+1. Consequently, by the concentration of measure

for Lipschitz functions of Gaussian random variables [Wai19, Theorem 2.26], we have

P[V (g) ≥ E[V (g)] + t] ≤ exp

(
− mt2

8λbChc+1

)
.

Turning to the expectation we have

E[V (g)] =
1√
m
E[sup
v∈E

g>v] ≤ 1√
m
E
[√

g>Φ
>
BΦBg

]
.

By Jensen inequality, this leads to

E[V (g)] ≤ 1√
m

√
E[g>Φ

>
BΦBg] =

1√
m

√√√√ h∑
i=bChc+1

λi ≤
√

(1− C)h

m
λbChc+1.

Since m ≥ 2h/3, we get E[V (g)] . λ
1/2
bChc+1. Combining the pieces, we have shown that

P
[
sup
v∈E

v>Suj ≥ c′λ1/2
bChc+1 + t

]
≤ e
− mt2

8λbChc+1

for each j = 1, . . . , N . Then, we take t = 4
√

2λ
1/2
bChc+1 and take the union bound over all j ∈ [N ].

This leads to

P
[
‖ΦBS‖2 ≥ c′′λ1/2

bChc+1

]
≤ e−4m+2m = e−2m.

which completes the proof.

Proof of Lemma 21. For the kernel class, we have

Eε

[
sup
f∈F

1

n

n∑
i=1

εif (xi)

]
=

1

n
Eε

[
sup
f∈F

n∑
i=1

εi 〈f, k (·, xi)〉

]

=
1

n
Eε

[
sup
f∈F

〈
f,

n∑
i=1

εik (·, xi)

〉]
.

By the representer theorem, the maximizer of the above quantity can be explicitly formulated as

f = sup
f∈F
‖f‖F

∑n
i=1 εik (·, Xi)

‖
∑n

i=1 εik (·, Xi)‖H
.

Thus, there holds

Eε

[
sup
f∈F

1

n

n∑
i=1

εif (xi)

]
=

supf∈F ‖f‖F
n

Eε

[∥∥∥∥∥
n∑
i=1

εik (·, xi)

∥∥∥∥∥
H

]
.
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Reformulate kernel function as feature map yields

Eε

[∥∥∥∥∥
n∑
i=1

εik (·, xi)

∥∥∥∥∥
H

]
= Eε

√√√√∥∥∥∥∥
n∑
i=1

εiφ(xi)

∥∥∥∥∥
2

 = Eε

√√√√ n∑
i,j=1

εiεjφ(xi)>φ(xj)

 .
Then, by Jensen’s inequality, we have

Eε

√√√√ n∑
i,j=1

εiεjφ(xi)>φ(xj)

 ≤
√√√√√Eε

 n∑
i,j=1

εiεjφ(xi)>φ(xj)


=

√√√√ n∑
i=1

φ(xi)>φ(xi) ≤
√
nκ

which completes the proof.

Proof of Lemma 22. The lemma is a direct corollary of Lemma 21 since {Sα|α ∈ Rm} is a subset

of Rn.

Proof of Lemma 23. Note that F̃ is a subset of F . Thus, by monotonicity of local Rademacher

complexity with respect to the function class, the conclusion holds.

Proof of Lemma 24. The lemma is a direct corollary of Theorem 2.1 in [BBM05]. We let x =

2 log n and α = 2/3.

A.2 Proofs of Results in Appendix 5.1.1

Proof of Lemma 25. By Weyl’s Theorem [HJ12, Theorem 4.3.1] , we have

λi(Σ− (Σ− Ih)P )− λi(Σ′ − (Σ′ − Ih)P ′) ≤‖Σ− (Σ− Ih)P − Σ′ − (Σ′ − Ih)P ′‖2.

Then, by triangle inequality, there holds

‖Σ− (Σ− Ih)P − Σ′ − (Σ′ − Ih)P ′‖2
≤‖Σ− Σ′‖2 + ‖P − P ′‖2 + ‖P ′‖2‖Σ− Σ′‖2 + ‖Σ‖2‖P − P ′‖2
≤2
(
‖Σ− Σ′‖2 + ‖P − P ′‖2

)
where the last inequality holds because ‖P ′‖2 = 1 by definition and λi(Σ) ≤ 1 as in Assumption 4.

It remains to show that ‖Σ− Σ′‖2 ≤ 2
√
κ/
√
n. Since D and D′ are neighboring data sets, Φ and Φ’

only differ in their first column. Then, Φ>Φ and Φ
′>Φ′ only differ in their first row and first column,

which consist of 2n− 1 entries in total. As a result, we have

‖Φ>Φ− Φ′>Φ′‖2 ≤ ‖Φ>Φ− Φ′>Φ′‖F ≤
√

2κ(2n− 1).
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The last inequality holds since the (i, j)-th element of Φ>Φ− Φ′>Φ′ is k(xi, xj)− k(x′i, x
′
j), which is

absolutely bounded by 2κ and is non-zero only if i = 1 or j = 1. Consequently, we have

‖Σ− Σ′‖2 ≤
1

n
‖Φ>Φ− Φ′>Φ′‖2 ≤

2
√
κ√
n

which yields the desired result.

Proof of Lemma 26. Remind that, by definition, m of the eigenvalues of P is 1 and the others

are 0. Since P is symmetric, its eigenspaces are mutually orthogonal. Let u be an eigenvector of

Σ− (Σ− Ih)P . u has a unique orthogonal decomposition u0 + u1 where ui is the projection onto the

eigenspace of P with eigenvalue i for i = 0, 1. Then,

λu =
(
Σ− (Σ− Ih)P

)
u = Σu− (Σ− Ih)u1 = Σu0 + u1. (21)

Thus, for each eigenvector ũ1 of P with eigenvalue 1, it is also an eigenvector of Σ− (Σ− Ih)P with

eigenvalue 1. This is to say, m of eigenvalues of Σ− (Σ− Ih)P are 1. Assume that ‖u‖2 is 1. Multiply

(21) by u, we have

λ = u1Σu0 + u0Σu0 + u1>u1 ≥− 1

2
u0Σu0 − 1

2
u1Σu1 + u0Σu0 + u1>u1

=
1

2
u0Σu0 − 1

2
u1Σu1 + u1>u1.

Reminding Assumption 4 that λh(Σ) ≤ λi(Σ) ≤ 1, we have

1

2
u0Σu0 − 1

2
u1Σu1 + u1>u1 ≥ 1

2

(
u0Σu0 + u1Σu1

)
≥ λh(Σ)

2

(
‖u0‖22 + ‖u1‖22

)
=
λh(Σ)

2
.

Obviously, we also have

λ = ‖λu‖2 ≤ ‖Σu0‖2 + ‖u1‖2 ≤ 2.

Proof of Lemma 27. Remind the definition of J(fw,D), taking derivative yields

∇wJ(fw,D) =
1

n

n∑
i=1

`′(φ(xi)
>w, yi)φ(xi) + 2λw.

Since D and D′ only differs at x1, we have

‖∇wJ(fw,D)−∇wJ(fw,D′)‖2 =‖ 1

n
`′(φ(x1)>w, y1)φ(x1)− 1

n
`′(φ(x′1)>w, y′1)φ(x′1)‖2

≤2cL
√
κ

n

where we used Assumption 1 and 3 in the last step.
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Proof of Lemma 28. We first give explicit expression of a bijection between Gw(D) and Gw(D′)
by construction. For each w, let e1, · · · eh be a set of standard orthogonal basis in Rh satisfying

e1, e2 ∈ span{∇wJ(fw,D),∇wJ(fw,D′)} and e3, · · · eh ∈ span{∇wJ(fw,D),∇wJ(fw,D′)}⊥. A rota-

tion matrix U in Rh satisfies

U ∈ Rh×h, U−1 = U>, detU = 1.

Define the rotation matrix U = Uw,D,D′ from ∇wJ(fw,D) to ∇wJ(fw,D′) by

U
∇wJ(fw,D)

‖∇wJ(fw,D)‖2
=
∇wJ(fw,D′)
‖∇wJ(fw,D′)‖2

and Uei = ei, for i = 2, · · · , h. (22)

Condition (22) specifies a unique U for each pair of w,D and D′. The rotation matrix only operates

on the two-dimensional subspace span{∇wJ(fw,D),∇wJ(fw,D′)}. Then we claim that for each

gm,hP,b ∈ Gw(D), we have gm,hP ′,b′ ∈ Gw(D′) where P ′ = UPU> and b′ = (Ih − P ′)w. To see this, recall

the formulation of Gw(D) in Definition 14 that

P∇wJ(fw,D) = 0 and (Ih − P )w = b.

Then,

P ′∇wJ(fw,D) = UPU>∇wJ(fw,D′) =UPU>U∇wJ(fw,D)
‖∇wJ(fw,D′)‖
‖∇wJ(fw,D)‖

=UP∇wJ(fw,D)
‖∇wJ(fw,D′)‖
‖∇wJ(fw,D)‖

= 0.

Also, b′ = (Ih − P ′)w follows from definition and thus gm,hP ′,b′ ∈ Gw(D′). The map U is defined as the

map from gm,hP,b to gm,hP ′,b′ . Note that this is a bijection since U is invertible.

Next, we show that ‖P −P ′‖2 ≤ 16cL
√
κn−1/2 for w ∈ ∆n. Recall the definition of U in (22), the

operator norm of U − Ih satisfies

‖U − Ih‖2 ≤ ‖
(
U − Ih

) ∇wJ(fw,D)

‖∇wJ(fw,D)‖2
‖2 = ‖ ∇wJ(fw,D)

‖∇wJ(fw,D)‖2
− ∇wJ(fw,D′)
‖∇wJ(fw,D′)‖2

‖2.

Note that both ∇wJ(fw,D)
‖∇wJ(fw,D)‖2 and ∇wJ(fw,D′)

‖∇wJ(fw,D′)‖2 are unit length vector. By the law of cosine, see for

instance [Pic09], there holds

‖ ∇wJ(fw,D)

‖∇wJ(fw,D)‖2
− ∇wJ(fw,D′)
‖∇wJ(fw,D′)‖2

‖2 =2− 2
∇wJ(fw,D) · ∇wJ(fw,D′)

‖∇wJ(fw,D)‖2‖∇wJ(fw,D′)‖2
.

We can further decompose this as

2− 2
∇wJ(fw,D) ·

(
∇wJ(fw,D) +∇wJ(fw,D′)−∇wJ(fw,D)

)
‖∇wJ(fw,D)‖2‖∇wJ(fw,D′)‖2

=2− 2
‖∇wJ(fw,D)‖2
‖∇wJ(fw,D′)‖2

− 2
∇wJ(fw,D) ·

(
∇wJ(fw,D′)−∇wJ(fw,D)

)
‖∇wJ(fw,D)‖2‖∇wJ(fw,D′)‖2

(23)
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By Lemma 27, ‖∇wJ(fw,D)−∇wJ(fw,D‘)‖2 ≤ 2cL
√
κ/n. Then we have

‖∇wJ(fw,D)‖2
‖∇wJ(fw,D′)‖2

≥‖∇wJ(fw,D′)‖2 − ‖∇wJ(fw,D)−∇wJ(fw,D′)‖2
‖∇wJ(fw,D′)‖2

=1− 2cL
√
κ

n‖∇wJ(fw,D′)‖2
.

For w ∈ ∆n, this yields

‖∇wJ(fw,D)‖2
‖∇wJ(fw,D′)‖2

≥ 1− 2cL
√
κ√

n
. (24)

Analogously, we also have

∇wJ(fw,D) ·
(
∇wJ(fw,D′)−∇wJ(fw,D)

)
‖∇wJ(fw,D)‖2‖∇wJ(fw,D′)‖2

≥− ‖∇wJ(fw,D)‖2‖∇wJ(fw,D′)−∇wJ(fw,D)‖
‖∇wJ(fw,D)‖2‖∇wJ(fw,D′)‖2

≥ −2cL
√
κ√

n
. (25)

Combining (24) and (25), (23) yields

‖U − Ih‖2 ≤
8cL
√
κ√

n
.

Then, by definition of P ′, we have

‖P − P ′‖2 = ‖P − UPU>‖2 = ‖PU − UP‖2 ≤‖PU − P‖2 + ‖P − UP‖2

≤2‖P‖2‖U − Ih‖2 ≤
16cL

√
κ√

n
.
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